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IDENTIFICATION OF TWO-PLAYER SITUATIONS WHERE COOPERATION IS 
PREFERABLE TO USE O F  PERCENTILE GAME THEORY 

John E. Walsh* Grace J. Kelleher 
Southern Methodist University University of Texas a t  Arlington 

ABSTRACT 

Considered i s  descrete  two-person game theory where t h e  p layers  choose 

t h e i r  s t r a t e g i e s  separately and independently. A general ly  appl icable  

form of pe rcen t i l e  gametheory,using mixed s t r a t eg ie s ,  has been developed 

where player  i can select a 100~~. percen t i l e  c r i t e r i o n  and determine a 

so lu t ion  t h a t  i s  optimum to him f o r  t h i s  c r i t e r i o n  (i = 1, 2) .  For example, 

1 

median game theory occurs when t h e  p layers  decide t o  s e l e c t  cy1 = cya = 1/2. 

The only requirement f o r  u sab i l i t y  i s  tha t ,  separately,  each player  can 

rank the  outcomes for t h e  game (pa i r s  of payoffs, one t o  each p layer )  

according t o  t h e i r  des i r ab i l i t y  t o  him. When cooperation can occur, how- 

ever, cooperative choice of s t r a t eg ie s  can have advantages compared t o  a 

specif ied use, o r  c l a s s  of uses, of pe rcen t i l e  game theory (a use i s  defined 

by the  values of t h e  t w o  pe rcen t i l e s ) .  This paper i d e n t i f i e s  s i t u a t i o n s  

where cooperation i s  de f in i t e ly  preferable,  f o r  t w o  types of cooperation. 

N o  s ide  payments a r e  made for one type of cooperation. This type can 

occur f o r  any s i t u a t i o n  where pe rcen t i l e  game theory i s  appl icable .  Side 

payments can be made f o r  t h e  o ther  type of cooperation. This type occurs 

f o r  s i t ua t ions  where a l l  payoffs can be expressed i n  a common u n i t  and sa t -  

i s f y  a r i thmet ica l  operations.  Rules a r e  given f o r  deciding when cooper- 

a t i o n  i s  de f in i t e ly  advantageous. Cooperation i s  always d e f i n i t e l y  prefer- 

ab le  when cy1 + Up > 1. 

* Research p a r t i a l l y  supported by Mobil Research and Development Cor-  
poration. 
Grant NGR 44-007-028. 

Also associated with ONR Contract N0014-68-A-0515 and NASA 
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INTRODUCTION AND DISCUSSION 

A general ly  appl icable  form of d i s c r e t e  two-person game theory based 

on pe rcen t i l e  considerat ions has been developed ( r e f .  1) f o r  s i t u a t i o n s  

where the  p layers  select t h e i r  s t r a t e g i e s  separately and independently. 

The payoffs can be of almost any nature and some of them may not even be 

numerical. The p a i r s  of payoffs, one t o  each player,  t h a t  occur f o r  t he  

various combinations of s t ra tegy choices a r e  t h e  poss ib le  outcomes fo r  t he  

game. These outcomes, and the  preferences of t h e  players ,  a r e  such t h a t  

separately each player  i s  able  t o  rank the  outcomes according t o  t h e i r  

r e l a t i v e  d e s i r a b i l i t y  t o  him (including equal d e s i r a b i l i t y  a s  a p o s s i b i l i t y ) .  

The two rankings do not necessarily bear any r e l a t ionsh ip  t o  each o ther .  

For pe rcen t i l e  game theory, player  i selects a pe rcen t i l e  l0W 
i 

and wants t o  play t h e  game optimally with respect t o  t h i s  pe rcen t i l e  

(i = 1,2). A l a r g e s t  l e v e l  of d e s i r a b i l i t y  (which corresponds t o  one o r  

more outcomes 0 . )  occurs for the i - t h  player  such t h a t  he can assure, 

with probabi l i ty  a t  l e a s t  cy t h a t  an outcome with a t  l e a s t  t h i s  d e s i r a b i l i t y  

is  obtained. This can be done simultaneously by both players .  A method 

fo r  determining 0 and an optimum (mixed) s t ra tegy  f o r  each player  i s  

given i n  ref .  1. The Appendix contains  an ou t l ine  of t h i s  method. 

Incidental ly ,  median game theory occurs f o r  t h e  spec ia l  case where 

1 

i’ 

i 

cy1 = cya = 1/2. 

It i s  t o  be noted t h a t  a ranking of t he  outcomes by a player  not 

only considers t he  payoffs t o  him but a l s o  t h e  corresponding payoffs t o  

the  other  player .  Thus, t o  the  player  doing t h e  ranking, h i s  ranking shows 
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t h e  r e l a t i v e  d e s i r a b i l i t y  of what can occur f o r  t h e  game, including 

occurs f o r  t he  other  player .  Hence, f o r  separate and independent choice 

of s t r a t eg ie s ,  and given values f o r  cy1 and cya, t h e  optimun so lu t ions  

developed i n  r e f .  1 a r e  a s  good a s  can be obtained on t h i s  bas i s .  

what 

The usefulness of the  percent i le  approach ( fo r  spec i f ied  cy1 and CY,) 

is  not so evident when t h e  players  can cooperate i n  se lec t ion  of s t r a t e g i e s  

with cooperation, they may be able t o  obtain a game outcome tha t ,  t o  both, 

i s  preferab le  t o  use of solut ions t h a t  a r e  optimum when the re  i s  no co- 

operat ion.  

su i t ab le  use of cooperation i s  d e f i n i t e l y  preferab le  t o  use of pe rcen t i l e  

game theory. In  making t h i s  ident i f ica t ion ,  t h e  preference rankings of t he  

game outcomes a r e  considered t o  be known f o r  both p layers .  

values of cy1 and Cy, can a f f e c t  t h i s  preference.  I n  f ac t ,  cooperation is  

found t o  always be d e f i n i t e l y  advantageous. when  CY^ + CYa > 1. 

on cooperation have already been developed f o r  cy1 = as) = 1/2 and a r e  

given i n  r e f .  2 .  

This paper i s  concerned with iden t i f i ca t ion  of cases where 

Of course, t he  

Some r e s u l t s  

TWO types of cooperation a r e  considered. For the  f i r s t  type, no 

payments from one player  t o  the o ther  a r e  made (no s ide  payments). Co- 

operation of t he  f i r s t  t ype  can occur f o r  v i r t u a l l y  a l l  s i t ua t ions  ( a l l  

s i t u a t i o n s  where pe rcen t i l e  game theory i s  appl icable)  . 
Cooperation of t h e  second type can involve s ide  payments but imposes 

a condi t ion on the  payoffs. That is, f o r  s ide  payments t o  be meaningful, 

t h e  t o t a l i t y  of payoffs should be expressible  i n  a common u n i t  and s a t i s f y  

a r i thmet ica l  operat ions ( the operat ions of addi t ion  and subtract ion,  a t  t he  

l e a s t ) .  



For both types of cooperation, a r e s t r i c t i o n  i s  sometimes imposed 

on t h e  allowable freedom i n  ranking of t h e  outcomes. 

i s  or iented toward s i t u a t i o n s  where t h e  p layers  behave i n  a competitive 

manner. Specif ical ly ,  fo r  a given player,  r e l a t i v e  d e s i r a b i l i t y  i s  re- 

quired t o  be a nondecreasing function of t he  d e s i r a b i l i t y  l e v e l  of h i s  

payoff when the  d e s i r a b i l i t y  leve l  of t he  payoff f o r  t he  o ther  player  ( t o  

the  o ther  player  1 i s  nonincreasing. 

t a b l e  f o r  any s i t u a t i o n  of p r a c t i c a l  i n t e r e s t  where t h e  p layers  behave 

competitively and, separately, each player  i s  ab le  t o  rank h i s  payoffs 

according t o  increasing d e s i r a b i l i t y  l eve l  ( to  him). 

This r e s t r i c t i o n  

This r e s t r i c t i o n  would seem accep- 

L e t  pl, pa denote an  ove ra l l  "outcome" f o r  t he  game where, when 

i 

0 
s ide  payments can be made, p 

(i = 1, 2). Thus, the  values of p1 and pa a r e  influenced by a payment made 

i s  the  ove ra l l  amount received by player  i, 

(g) )  denote an  ac tua l  from one player  to  t h e  o ther .  Also, l e t  (pl (9) , Pa 

outcome of the  game, a s  determined by the  payoff matrices.  

(pl (g) ,  pa (g))  a r e  compared for  t he  f i r s t  type of cooperation. A l l  p1, pa 

such t h a t  p1 + pa equals p1 + Pa (g) ,  for  some game outcome, a r e  compared 

Only t h e  

0 
( and can possibly occur) for  t he  second type of cooperation. The 

(pl ('I, pa (g)) are,  of course, included i n  the  t o t a l i t y  of t he  pl, pa . 0 
Cooperation i s  considered t o  be d e f i n i t e l y  advantageous, compared 

t o  optimum use of percent i le  game theory (with given cy1, a a ) ,  when both 

p layers  can gain by agreeing on an achievable pi7 pa . That is, f o r  t he  

first type of cooperation, they agree t o  s e l e c t  s t r a t e g i e s  so t h a t  a 

determined game outcome is  obtained. 

t h e  agree t o  choose s t r a t eg ie s  and make s ide  payments so t h a t  a determined 

o v e r a l l  outcome occurs. 

0 
For t h e  second type of cooperation, 
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A r u l e  fo r  deciding when cooperation i s  d e f i n i t e l y  advantageous i s  

given i n  t h e  next sect ion.  Some implicat ions of t h i s  r u l e ,  f o r  competitive 

games and f o r  games i n  general, a r e  considered i n  the  f i n a l  sect ion.  

GENERAL RULE 

L e t  t h e  t o t a l i t y  of game outcomet(pl (g 1 , pa (')).be ranked according 

t o  increasing d e s i r a b i l i t y  separately by each player .  There i s  a smal les t  

subset S. (c t . )  such t h a t  a l l  other game outcomes are less des i rab le  t o  

player  i than those of t h i s  subset and a lso an outcome of t h i s  subset can 

1 1  

be assured with probabi l i ty  a t  least CY by player  i, (i = 1, 2 ) .  Statement 

of a method t h a t  can be used to determine S i (a . ) i s  given i n  r e f .  1. 

ou t l ine  of t h i s  method occurs i n  t h e  Appendix. It i s  t o  be noted t h a t  

i 

An 
1 

S, (1/2) and Sa (1/2)  can d i f f e r  s l i g h t l y  from the  subsets S and S of 

r e f .  2 .  

I I1 

The subsets  S , ( a , )  and S , ( a a )  provide t h e  b a s i s  f o r  a general  r u l e  t ha t  

can be used t o  decide when cooperation is  d e f i n i t e l y  preferab le  t o  pe rcen t i l e  

game theory (with CY, and Cy0 specif ied)  

General Rule: Suitable use of cooperation i s  d e f i n i t e l y  

preferab le  for  both players  when an achievable outcome 

(p,, pa) occurs t h a t  i s  a t  least  a s  des i rab le  t o  player  

1 as one o r  more of the  game outcomes of S,(a,)  and 

a l s o  i s  a t  least a s  des i rab le  t o  player  2 a s  one o r  more 

of the  game outcomes of Sa(CI1). 

This  r u l e  follows from the  consideration t h a t  an  achievable (overa l l )  

outcome with a t  l e a s t  t h e  minimum l e v e l  of d e s i r a b i l i t y  f o r  both S,(CY,) 

and Sa (a,) can be obtained with ce r t a in ty .  For player  i, optimum use of 



-6- 

t h e  pe rcen t i l e  

l e v e l  a t  l e a s t  

l e a s t  cyi, (i = 

approach only assures  t h a t  an outcome with d e s i r a b i l i t y  

t h e  minimum f o r  S.(a.) i s  obtained with probabi l i ty  a t  
1 1  

1, 2 ) .  

The achievable for  t h e  f i r s t  type of cooperation a r e  t h e  

( p1 (g) ,  pa (g)).  A l l  (pl, pa) t h a t  s a t i s f y  p1 + pa = p1 + pa (g) ,  f o r  

some game outcome, a r e  achievable f o r  t h e  second type of cooperation. 

Sui table  use of cooperation i s  d e f i n i t e l y  advantages, f o r  both types 

of cooperation, when the  same game outcome occurs i n  both S1 (al ) and Sa (a,) . 
This always happens, a s  shown i n  t h e  next section, when cy1 + cya > 1. 

However, S l ( a l )  and Sa(cy,) need not have any game outcomes i n  common when 

cy1 + cya < 1. 

ing funct ion of cy 

n i t e l y  

c i e n t  increase i n  cy1 and/or @a (even though ai + cya 1 i n  a l l  c a s e s ) .  

Also, t h e  minimum l e v e l  of d e s i r a b i l i t y  f o r  outcomes of S.(cy.) 

increasing funct ion of a 

want t o  use (yl and cya values which r e s u l t  i n  cy1 + C Y 1  > 1. 

Of course, t h e  number of outcomes i n  S.  (CY.)  i s  a nondecreas- 

so s i tua t ions  can occur where cooperation i s  not def i -  

1 1  

i’ 

preferab le  for  given Cy1, a, but  i s  d e f i n i t e l y  preferab le  f o r  s u f f i -  

i s  a non- 
1 1  

and s i t u a t i o n s  can occur where t h e  p l aye r s  do not i 

A game outcome t h a t  i s  common t o  both Sl (al 1 and Sa (CY,) must occur if 

There is, the  f i r s t  type of cooperation i s  t o  be d e f i n i t e l y  preferable .  

however, a broad c l a s s  of s i tua t ions  where t h e  second type of cooperation 

i s  preferab le ,  even though cy1 + CY0 J. Some considerat ion of s i t u a t i o n s  

where t h e  second type i s  preferable  occurs i n  the  next sect ion.  

IMPLICATIONS OF RULE 

F i r s t ,  consider ve r i f i ca t ion  of t he  statement t h a t  cooperation i s  

always d e f i n i t e l y  preferable  when cy1 + > 1. This follows from 



THEOREM 1. - I f  SI (cy1 and Sa (Ua) have no game outcomes i n  common, 

PROOF: An outcome of S.(cy.) can be assured with p robab i l i t y  a t  
1 1  

l e a s t  cy. by player  i, (i = 1, 2 ) .  This implies t h a t  t h e  complement of 

S1 (cy1 ) i n  t h e  t o t a l i t y  of game outcomes, denoted by zl (cyl 1, can be assured 

by player  2 with p robab i l i t y  a t  most 1 - cy1. However, Sl(cyl) contains  

1 

- 

Sa (CY,), which implies t h a t  1 - cy1 2 cya, o r  cy1 + C y 1  1. 

This theorem holds, i n  pa r t i cu la r ,  when cy1 and a r e  a t t a i n a b l e  values 

i f  p layer  i cannot assure  an  ( r e f .  1). A value CY ( O )  i s  a t t a inab le  f o r  cy i i 

outcome of S .  

value fo r  cyi i s  not a t ta inable ,  t he  value ac tua l ly  used f o r  cy 

smallest  of t h e  a t t a i n a b l e  values t h a t  exceeds the  spec i f ied  value. 

1 with probabi l i ty  g rea t e r  than cy ( O ) .  When a spec i f ied  
1 i 

is  t h e  i 

It 

is  advisable t o  use a t t a i n a b l e  values f o r  cyl and cya. 

t i o n  of  CY^ (0 1 + (Iya (O) > 1 does not occur when cy1 + 
Then, a t r u e  s i t ua -  

5 1 f o r  t h e  spec i f ied  

values .  

Next, consider the  advantages of cooperation f o r  games that  a r e  

"competitive." H e r e ,  a game is considered t o  be competitive i f  and only 

if t h e  t o t a l i t y  of game outcomes can be arranged i n  a sequence so t h a t  t h e  

payoffs f o r  p layer  1 have nondecreasing d e s i r a b i l i t y  ( t o  him) and a l s o  the  

payoffs f o r  player  2 have nonincreasing d e s i r a b i l t i y  l e v e l  ( t o  him). This 

general izes  t h e  concept of competitive games given i n  r e f .  3 f o r  t h e  case 

of payoffs that a r e  numbers. 

For a competitive game and the  r e s t r i c t i o n  imposed f o r  compteitive 

behavior of the  players,  S, (a1 1 and S, (cy,) have no outcomes i n  common when 

cy1 + cya < 1 f o r  a t t a i n a b l e  values. This follows from 
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I 

. 
THEOREM 2. - L e t  CY, (O) - and (O) be a t t a i n a b l e  values f o r  Cy1 and a,, 

respec t ive ly .  When t h e  r e s t r i c t i o n  for  competitive behavior holds, 

(O) + CY3 (O) < 1, then t h e  subsets  S, (a, (O)) and game i s  competitive, cy1 - 
Sa (CYa(O)) are mutually exclusive and the re  i s  a t  l e a s t  one game outcome 

t h a t  does not belong t o  e i t h e r  of them. 

PROOF: I f  t h i s  were not true, t he  r e s t r i c t i o n  on ranking outcomes due 

t o  the  competitive behavior would imply t h a t  t he  union of S, (CY, (O)) and 

Sa (cya( ' ) )  i s  t h e  t o t a l i t y  of the game outcomes. Then, Sa ( a a ( O ) )  contains  
- 
s, (CY, (O)) . 
can a s su re  an  outcome of S, (a, (O)) with p robab i l i t y  a t  l e a s t  l-cY1 (O) but  

no t  i n  excess of 1 - CY, (O) (because player  1 can assure  an outcome of 

S, (CY, (O)) with probabi l i ty  a t  least a, (O) but  not i n  excess of cy1 

This, combined with t h e  r e l a t ionsh ip  between Sa (a, (O)) and F, (cy1 

implies t h a t  (O) 2 1 - CY, , or Cy1 

Also, 1 - a1 (O) i s  an  a t t a i n a b l e  value f o r  CYa, s ince  player  2 
- 

( 0 )  ) 

(0)) , 
+ CYa (O) 2 1, a contradict ion.  (0 1 (0 1 

Thus, f o r  competitive behavior, a competitive game, and use of 

attainable CY t h e  subsets  S, (a1 ) and Sa (CY,) necessar i ly  have a t  l e a s t  

one outcome i n  common when a1 + cy1 > 1 and necessar i ly  a r e  mutually ex- 

i' 

c lus ive  when cu1 + CY3 C 1. There may, o r  may not, be any outcomes i n  

common when al + CYa = 1. 

Occurrence of a common outcome for SI (a, and S, (a,) i s  not necessary 

fo r  d e f i n i t e  preference of the second type of cooperation. For example, 

cooperation o f t en  happens t o  be preferab le  i n  t h e  somewhat common s i t u a t i o n  

where an  increase  of zero or more i n  t h e  payoff received by a player,  com- 

bined with add i t ion  of a t  most t h i s  amount (negative amounts poss ib le )  t o  

the  payoff f o r  t he  other  player, y i e l d s  another outcome t h a t  i s  a t  l e a s t  
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a s  des i r ab le  t o  him. Here, t h e  payoffs  a r e  expressed i n  t h e  same u n i t  

and j u s t i f i c a t i o n  f o r  t h e  preceding a s s e r t i o n  follows from 

THEOREM 3. Suppose t h a t ,  for  any outcome (p, (g) ,  Pa (d) , a modifi- 

ca t ion  p1 + h,, Pa + ha) , t o  some achievable  outcome, i s  a s  l e a s t  

( g ) )  when h .  2 0 and t h e  o ther  h 

( 
1 a s  des i r ab le  t o  p layer  i as (PI , pa - 

- ( "> 
(pl 11", pa"') such t h a t  pa I - pa'' 2 p1' - p," and 

i s  a t  most equal t o  hi, (i = 1, 2 ) .  

(PI I ,  Pa') Of SI (CY1  1, an  outcome p1 , pa 

Then, i f  t h e r e  e x i s t s  an  outcome 

of Sa (CYa), and a game outcome 

p, '" + pa 'I' 2 max (p1' + p:, I ,  p1" + pa") , t h e  second type of cooperation 

i s  d e f i n i t e l y  advantageous. 

PROOF: L e t  and pa"' be expressed i n  t h e  form 

The condi t ions of t h e  theorem imply t h a t  

a + b > O ,  A + B 2 0 ,  B - A + a - b 2 0 .  

Suppose t h a t  t h e  p l aye r s  use p1 " I ,  Pa1") and t h a t  p layer  2 makes a s ide  

payment of c = (b + B - a - A ) / 4  t o  p layer  1. The r e s u l t  i s  
c -. 

(pi 111 + c, pa111 - c + (3a + b + B - A ) / 4 ,  pa '  + (3b - B + a + A ) / 4  , 
with a nonnegative amount added t o  pl '  and a t  m o s t  t h i s  amount added t o  

-- 

3a + b  + B - A  2 3a + b + b - a = 2(a  + b)  2 0, 

( 3 a + b + B - A )  - ( 3 b - B + a + A )  = 2 ( B - A + a - b ) - ) 0 .  

Likewise, -- , 

L 4 

where a nonegative amount i s  added t o  pa1' and a t  most t h i s  amount i s  added 

t o  pI1'. Thus, from t h e  supposit ion of t h e  theorem, t h e  achievable outcome 
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(pl'" + C, pa1" - C i s  a t  least a s  des i rab le  t o  player  1 a s  pl ' ,  pal  

of S1 (cy,) and a s  least a s  des i rab le  t o  player  2 as  

( 
(P111, P ~ l ~ )  of sa(cya). 

1 

APPENDIX 

The same r e s u l t s  a r e  appl icable  t o  each player  and a r e  s t a t e d  f o r  

player  i. H e r e  t h e  p layers  select s t r a t e g i e s  separately and independently, 

and t h e  only outcomes considered are game outcomes. A way of determining 

t h e  l a r g e s t  l e v e l  of d e s i r a b i l i t y  (corresponds t o  one or m o r e  outcomes 0 . )  

that player  i can assure  with probabi l i ty  a t  l e a s t  cy i s  out l ined.  

a method f o r  determining an opthum s t ra tegy  f o r  player  i i s  described. 

1 

Then, i 

These procedures a r e  based on a marking of t he  payoff pos i t i ons  i n  the  

matrix f o r  player  i. A more de ta i led  statement of these  methods i s  

given i n  r e f .  1. 

F i r s t ,  mark the  pos i t i on ( s )  i n  t h e  payoff matrix f o r  player  i of 

the  outcome(s) with the  highest l e v e l  of d e s i r a b i l i t y  t o  him. Next, a l s o  

mark t h e  p o s i t i o n ( s )  of the  outcome(s) with the  next t o  highest  l eve l  of 

d e s i r a b i l i t y .  Continue t h i s  marking, according t o  decreasing l eve l  of 

des i r ab i l i t y ,  u n t i l  the  f i r s t  t h e  t h a t  player  i can assure  t h e  occurrence 

of an  outcome i n  the marked s e t  with probabi l i ty  a t  least cy . The l a s t  

(and lowest) l eve l  d e s i r a b i l i t y  for which a marking ul t imately occurred 

i 

i s  the  highest  l e v e l  t h a t  can be assured by player  i with probabi l i ty  a t  

least  cyi, with 0. being t h e  outcome(s1 marked las t .  The set S.  (cy.) con- 
1 1 1  

sists of t he  outcomes whose d e s i r a b i l i t y  level,  t o  player  i, i s  a t  l e a s t  

a s  g rea t  a s  t h e  l eve l  f o r  0 . i 
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The method f o r  determining whether a set  of marked outcomes can be 

c o n s i s t s  i n  first replacing a l l  of assured with probabi l i ty  a t  l e a s t  (y 

t h e i r  pos i t i ons  (marked) i n  t h e  matrix f o r  player  i by uni ty  and a l l  o ther  

i 

pos i t ions  by zero. The resu l t ing  matr ix  of ones and zeroes i s  considered 

t o  be f o r  player  i i n  a zero-sum game with an expected-value bas i s .  

player i can assure  an  outcome of t h e  marked set with probabi l i ty  a t  l e a s t  

i f  and only i f  t he  value of t h i s  game, f o r  him, i s  a t  l e a s t  CY . 
@i i 

Now, consider determination of a n  optimum s t ra tegy  f o r  player  i. 

U s e  t he  matrix marking tha t ,  ult imately,  resu l ted  i n  the  smallest marked 

set (according t o  the  marking procedure) such tha t  an outcome of t h i s  set 

can be assured by player  i w i t h  p robab i l i t y  a t  least CY . Replace the  

marked pos i t i ons  by uni ty  and the o the r s  by zero. 

i 

Treat t he  r e s u l t i n g  

matrix a s  t h a t  f o r  player  i i n  a zero-sum game with an  expected-value 

bas is .  

him. 

An optimum strategy for  player  i i n  t h i s  game is  (y -optimum f o r  i 
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I S U P P L € M E N T A R Y  N O T E S  

Considered i s  descrete  two-person game theory where the players  choose t h e i r  
s t r a t e g i e s  and separa te ly  and independently. A general ly  appl icable  form of per- 
c e n t i l e  game theory,  using mixed s t r a t e g i e s ,  has been developed where player  i can 
s e l e c t  a 1OOa. pe rcen t i l e  c r i t e r i o n  and determine a so lu t ion  t h a t  i s  optimum t o  h i m  
f o r  t h i s  c r i t e r i o n  ( i = 1 , 2 ) .  For example, median game theory occurs when the players  
decide t o  s e l e c t  al=a2=1/2. The only requirement f o r  u sab i l i t y  is  t h a t ,  separa te ly ,  
each player  can rank the outcomes f o r  the game (pa i r s  of payoffs,  one t o  each player)  
according t o  t h e i r  d e s i r a b i l i t y  t o  him. When cooperation can occurr however, coop- 
e r a t i v e  choice of s t r a t e g i e s  can have advantages compared t o  a spec i f ied  use,  o r  
c l a s s  of uses ,  of pe rcen t i l e  game theory ( a  use i s  defined by the values of the two 
p e r c e n t i l e s ) .  This paper i d e n t i f i e s  s i t u a t i o n s  where cooperation i s  d e f i n i t e l y  
p re fe rab le ,  f o r  two types of cooperation. No s i d e  payments a re  made f o r  one type of 
cooperation. This type can occur for  any s i t u a t i o n  where pe rcen t i l e  game theory is  
appl icable .  Side payments can be made f o r  the o ther  type of cooperation. This type 
occurs f o r  s i t u a t i o n s  where a l l  payoffs can be expressed i n  a common u n i t  and s a t i s f y  
a r i thmet ica l  operations.  Rules are given f o r  deciding when cooperation is  d e f i n i t e l y  
advantageous. 

1 

Cooperation is  always d e f i n i t e l y  preferable  when al+a2>1. 
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